central limit theorem

Finance and Economics 3239 04/07/2023 1044 Olivia

The Central Limit Theorem The central limit theorem is an important and widely used theorem in statistics and probability. It states that if a random number of samples of size n drawn from any population with an arbitrary distribution are averaged, the distribution of the average will tend to beco......

The Central Limit Theorem

The central limit theorem is an important and widely used theorem in statistics and probability. It states that if a random number of samples of size n drawn from any population with an arbitrary distribution are averaged, the distribution of the average will tend to become more normal (or Gaussian) as the sample size n increases. This is true regardless of the original distribution of the population from which the samples were taken.

The central limit theorem is particularly important for understanding the behavior of natural phenomena where the variables being studied tend to follow a normal distribution, even though the underlying population itself may not. This is because many physical events are the result of the cumulative effects of many individual events, each of which contribute in a small way to the overall effect. When sampled and averaged, these effects become distributed in a normal pattern, and thus the central limit theorem applies.

The central limit theorem was first demonstrated by French mathematician Abraham de Moivre in 1733 and later developed by Carl Friedrich Gauss in 1809. In its simplest form, the theorem states that given an infinite number of samples drawn from any arbitrary distribution, the means or averages of those samples will tend to follow a normal distribution. This means that the central limit theorem applies to infinitely many different distributions and provides a mathematical basis for a great number of important statistical principles.

To understand the central limit theorem, consider a population of numbers whose values are distributed according to any arbitrary distribution. This could be a population of birthdays, heights, weights, etc. Now, suppose we take a sample of size n from this population and compute the mean (or average) of that sample. If we then repeat this process an infinite number of times, the means of these samples will form a normal distribution.

This implies that the mean of many samples taken from the same population will tend to be the same. Furthermore, since the means of the samples will closely follow a normal distribution, we can calculate the standard deviation (or variability) of the sample mean. This is an important result often used in determining confidence intervals.

The central limit theorem also proves that the proportion of samples in the population which are likely to fall within any given interval or range is nearly independent of the shape of the distribution of the population. For instance, a population with a skewed distribution will still have the same proportion of samples within any given interval as a normally distributed population.

Finally, the central limit theorem can be used to obtain useful approximations for probability distributions when the underlying distributions are relatively complex. This is because complex distributions may not be amenable to analytical solutions but can often be approximated using the central limit theorem.

The central limit theorem has many practical applications in statistics, business, finance, and other fields. For example, in business, the central limit theorem is used to calculate the probability of a stock earning a certain amount of profit in a given time period. In finance, the theorem is used to estimate the volatility of stock prices over time. In biology, the theorem is used to determine the likelihood that a certain drug will have certain side effects on a population of test subjects.

In summary, the central limit theorem is a fundamental theorem in statistics and probability. It states that when samples are taken from a population with any arbitrary distribution and the means of these samples are computed, the distribution of those sample means will tend to become more normal as the sample size increases. The theorem has a wide range of practical applications in industry, finance, and other fields.

Put Away Put Away
Expand Expand
Finance and Economics 3239 2023-07-04 1044 StellaRayleigh

The Central Limit Theorem is one of the most important and widely used tools in Statistics. It states that when a random sample is taken from a population, the sample mean will tend to be normally distributed even if the population distribution is not normal. To understand the theorem, it is firs......

The Central Limit Theorem is one of the most important and widely used tools in Statistics. It states that when a random sample is taken from a population, the sample mean will tend to be normally distributed even if the population distribution is not normal.

To understand the theorem, it is first necessary to understand the concept of sampling. Sampling allows us to take a small subset of a population and use it to make inferences about what is likely to be true in the entire population. For example, if we were looking to study how book reading habits have changed over the past 5 years, we could survey a small sample of people about their book reading habits and use that information to make inferences about the population as a whole.

The Central Limit Theorem states that regardless of the distribution of the population from which the sample is drawn, the distribution of the sample mean will be normally distributed. This means that when we take a sample from a population, the majority of the sample means will fall within a certain range, with fewer sample means outside that range.

This theorem is particularly useful in hypothesis testing, as it allows us to calculate a confidence interval. This confidence interval tells us what range of values we should expect the sample mean to fall into if the hypothesis were true. This allows us to determine whether our conclusions are statistically significant or not.

The Central Limit Theorem is an important tool in statistical analysis and its implications are far reaching.It not only allows us to make inferences about what is likely to be true in a population, but also to calculate confidence intervals and make informed decisions based on these confidence intervals.

Put Away
Expand

Commenta

Please surf the Internet in a civilized manner, speak rationally and abide by relevant regulations.
Featured Entries
ship board
24/06/2023